I thought it might be instructive to present an approach that relies only on a set of elementary inequalities. To that end, we begin with a primer.
PRIMER:
In THIS ANSWER, I used only the limit definition of the exponential function and Bernoulli's Inequality to show that the exponential function satisfies the inequalities
$$\bbox[5px,border:2px solid #C0A000]{1+x\le e^x\le \frac{1}{1-x}} \tag 1$$
for $x<1$, and the logarithm function satisfies the inequalities
$$\bbox[5px,border:2px solid #C0A000]{\frac{x-1}{x}\le \log(x)\le x-1} \tag2$$
for $x>0$
We note that without loss of generality, we assume that the limit is taken from the left-hand side (i.e., $x<1$). Proceeding, let $f(x)=(4^x-3^x)^{1/(1-x)}$. Then, using $t=e^{\log(t)}$ we can write $f(x)$ as
$$\begin{align}
f(x)=e^{\frac{\log(4^x-3^x)}{1-x}} \tag 3
\end{align}$$
Letting $g(x)=\frac{\log(4^x-3^x)}{1-x}$ and exploiting $(1)$ and $(2)$, the upper bound for $g(x)$ is
$$\begin{align}
g(x)&\le \frac{4^x-3^x-1}{1-x}\\\\
&=\frac{4e^{(x-1)\log(4)}-3e^{(x-1)\log(3)}-1}{1-x}\\\\
&\le \frac{\frac{4}{1-(x-1)\log(4)}-3(1+(x-1)\log(3))-1}{1-x}\\\\
&=\frac{3\log(3)-4\log(4)-3\log(3)\log(4)(x-1)}{(1-(x-1)\log(4))}\\\\
&\to \log\left(\frac{3^3}{4^4}\right)\,\,\,\text{as}\,\,x\to 1 \tag 4
\end{align}$$
and the lower bound for $g(x)$ is
$$\begin{align}
g(x)&\ge \frac{4^x-3^x-1}{(1-x)(4^x-3^x)}\\\\
&=\frac{4e^{(x-1)\log(4)}-3e^{(x-1)\log(3)}-1}{(1-x)(4^x-3^x)}\\\\
&\ge \frac{4(1+(x-1)\log(4))-\frac{3}{1-(x-1)\log(3)}-1}{(1-x)(4^x-3^x)}\\\\
&=\frac{3\log(3)-4\log(4)+4\log(3)\log(4)(x-1)}{4^x-3^x}\\\\
&\to \log\left(\frac{3^3}{4^4}\right)\,\,\,\text{as}\,\,x\to 1 \tag 5
\end{align}$$
Applying the squeeze theorem to $(4)$ and $(5)$ shows that $\lim_{x\to 1}g(x)=\log\left(\frac{3^3}{4^4}\right)$ whereupon using $(3)$ and exploiting the continuity of the exponential function yields the coveted limit
$$\bbox[5px,border:2px solid #C0A000]{\lim_{x\to 1}(4^x-3^x)^{1/(1-x)}}=\frac{3^3}{4^4}$$
Note that the only tools used were the inequalities in $(1)$ and $(2)$ along with the continuity of the exponential function and the squeeze theorem!