For which $a,b \in\Bbb R$ does there exist the inverse of $A$: $$A=\begin{pmatrix} a&b& b &\ldots &b\\ b& a &b &\ldots&b\\ b& b & a &\ldots &b\\ \vdots&\vdots&\vdots& \ddots&\vdots\\ b&b& b&\ldots & a \end{pmatrix}\in M_n$$
So we want to see for which $a,b$ will the $\det(A)\neq 0$ .
$$\begin{vmatrix} a&b &b &\ldots &b\\ b& a &b &\ldots&b\\ b& b & a &\ldots &b\\ \vdots&\vdots&\vdots& \ddots&\vdots\\ b&b& b&\ldots & a \end{vmatrix}=\begin{vmatrix}a &b &b &\ldots &b\\ b-a& a-b &0 &\ldots&0\\ b-a& 0 & a-b &\ldots &0\\ \vdots&\vdots&\vdots& \ddots&\vdots\\ b-a&0& 0&\ldots & a-b \end{vmatrix}$$
This is almost a lower triangular matrix, only there should be zeros instead of $b$s in the 1st row. So if I put $b=0$, then I get a lower triangular matrix. The main diagonal will only have $a$s on it, so then $a\neq 0$? Is that it?