Is it possible to get a formula that has a fixed number of terms for this ecuation:
$$\cos 3+\cos 7+...+\cos(2n+3)=?$$
For example: a product of trigonometric functions
Is it possible to get a formula that has a fixed number of terms for this ecuation:
$$\cos 3+\cos 7+...+\cos(2n+3)=?$$
For example: a product of trigonometric functions
Try Euler's formula. Miracles can happen. You will encounter a geometric series. But it only works for summation.
$$S= \cos 3+\cos 7+...+\cos(2n+3) \\ 2\sin(2) S= 2\sin 2\left(\cos 3+\cos 7+...+\cos(2n+3) \right) \\ =2\sin2 \cos3 +2\sin2 \cos 7 + ... +2\sin2 \cos (2n+3)$$
Now, using the identity $$2\sin x \cos y = \sin(y+x)-\sin(y-x)$$ we get $$2\sin(2) S=(\sin 5-\sin1) + (\sin9-\sin 5) + ... +(\sin(2n+5)-\sin(2n+1) \\ 2\sin(2) S=\sin(2n+5)-\sin(1) $$
$${\frac {\cos \left( 5+2\,n \right) -\cos \left( 3+2\,n \right) -\cos \left( 3 \right) +\cos \left( 1 \right) }{2\,\cos \left( 2 \right)-2 }} $$