Let $U = span(u_1,u_2)$ and $V = span(v_1, v_2)$ be subspaces of $\mathbb{R}^4$ with $u_1 = (1,1,1,2), u_2 = (2,1,0,3)$ and $v_1 = (1,-1,1,0), v_2 = (-1,2,1,1)$ Determine a basis of $U \cap V$. Let a,b,c,d $\in \mathbb{R}$
Let $x \in U \cap V$ then $x = a*(1,1,1,2) + b*(2,1,0,3) = c*(1,-1,1,0) + d*(1,2,1,1)$
This gives us $(a + 2b, a+b, a, 2a+3b) = (c-d, -c + 2d, c+d,d)$ How do I go from here?