Hint: For large $n$ and $\frac{k-1}{n}\pi<x<\frac{k}{n}\pi$, $f$ is approximately constant, so one has
$$\int_{\frac{k-1}{n}\pi}^{\frac{k}{n}\pi}\lvert\sin nx\rvert f(x)dx\approx f\left(\frac{k}{n}\pi\right)\int_{\frac{k-1}{n}\pi}^{\frac{k}{n}\pi}\lvert\sin nx\rvert dx=\frac{2}{n}f\left(\frac{k}{n}\pi\right)$$
Of course, one still need to properly fit some epsilons in the Riemann sum and use uniform continuity in order to be rigorous, but the idea is clear.
EDIT: Simplification at Dr. MV's suggestion to use MVT (second formula with $f$ and $g$):
$$\int_{\frac{k-1}{n}\pi}^{\frac{k}{n}\pi}\lvert\sin nx\rvert f(x)dx=f(\xi_k)\int_{\frac{k-1}{n}\pi}^{\frac{k}{n}\pi}\lvert\sin nx\rvert dx=\frac{2}{n}f(\xi_k)$$ for some $\xi_k\in\left(\frac{k-1}{n}\pi,\frac{k}{n}\pi\right)$
Then sum for $k=1,2,\ldots,n$ and on the RHS you have a Riemann sum which converges to $\frac 2\pi \int_0^\pi f(x) dx$ for $n\rightarrow\infty$