How to find this sum :
$\sum_{n=0}^\infty \dfrac{n^2}{2^n}$
$\sum_{n=0}^\infty \dfrac{n^2}{2^n}=\dfrac{1}{2}+\dfrac{4}{4}+\dfrac{9}{8}+\dfrac{16}{16}+\dfrac{25}{32}+\dfrac{36}{64}+\dfrac{49}{128}+\dots$
Now $\sum_{n=0}^\infty \dfrac{n}{2^n}\leqslant \sum_{n=0}^\infty \dfrac{n^2}{2^n}$
And I know that $\sum_{n=0}^\infty \dfrac{n}{2^n}=2$.
But how to find this sum ? I am confused.Please give some hints.