$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\ln\pars{n^{\root{n}} \over n!} & = \root{n}\ln\pars{n} - \ln\pars{n!} \sim
\root{n}\ln\pars{n} - \bracks{n\ln\pars{n} - n}\quad\mbox{as}\quad n \to \infty
\end{align}
such that
$\ds{\lim_{n \to \infty}\ln\pars{n^{\root{n}} \over n!} = -\infty
\implies
\bbx{\ds{\lim_{n \to \infty}{n^{\root{n}} \over n!} = 0}}}$
I thought more about n! / n^ sqrt n ~ Sqrt(2 pi n ) * (n/e)^n / n^ sqrt n
– Zok Jan 19 '17 at 02:34