Let $\mathbb R^+$ be the set of positive real numbers and let the natural numbers be $\mathbb{N} = \{ 1,2,3,\ldots \}$. Let $\star_x$ be an operator on $\mathbb{R}^+$ such that
\begin{align} a \star_0 b &= a + b \\ a \star_1 b &= a \cdot b \\ a \star_2 b &= a^b \end{align}
And so on. In particular, if $b\in \mathbb{N}$ and $x \in \mathbb{N}$, then $\star_x$ satisfies the recursive property
$$ y \star_x b = \underbrace{y \star_{x-1} y \star_{x-1} \cdots \star_{x-1} y}_{b \text{ times}} $$
Is there a natural way of extending $\star_x$ for any $x \in \mathbb{R}^+$ so that the map $(a,b) \mapsto a \star_x b$ is a continuous function of $x$? (EDIT: And, hopefully, a continuous function of $a$ and $b$?)