Prove that $2 < f(n) < 3$ if $n$ is a natural number and $n \ge 2$ and $f(n)=\left (1+\frac{1}{n}\right)^n$.
I've succeded in proving that $f(n)>2$ :
$$ f(n)=\left (1+\frac{1}{n}\right)^n \\ f(n)=\binom{n}{0}+\binom{n}{1}\left(\frac{1}{n}\right)+\binom{n}{2}\left(\frac{1}{n^2}\right)+\binom{n}{3}\left(\frac{1}{n^3}\right)+...+\binom{n}{n}\left(\frac{1}{n^n}\right) $$ Since the first two terms in this series are $1$, $f(n) > 2$. Can anybody give me a few hints on proving the upper bound ? Edit : I already know of the way to do this using limits and am looking for a way to do this using the Binomial Theorem.