$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\pi}{\dd x \over 4 - 3\cos^{2}\pars{x}} & =
\int_{0}^{\pi/2}{\dd x \over 4 - 3\cos^{2}\pars{x}} +
\int_{\pi/2}^{\pi}{\dd x \over 4 - 3\cos^{2}\pars{x}}
\\[5mm] &=
2\int_{0}^{\pi/2}{\dd x \over 4 - 3\cos^{2}\pars{x}} =
2\int_{0}^{\pi/2}{\sec^{2}\pars{x}\,\dd x \over 4\sec^{2}\pars{x} - 3}
\\[5mm] & =
\int_{0}^{\pi/2}{2\sec^{2}\pars{x}\,\dd x \over 4\tan^{2}\pars{x} + 1}
\\[5mm] & \stackrel{t\ \equiv\ 2\tan\pars{x}}{=}\,\,\,
\int_{0}^{\infty}{\dd t \over t^{2} + 1} = \bbx{\ds{\pi \over 2}}
\end{align}