From the power series definition of the polylogarithm and from the integral representation of the Gamma function it is easy to show that: \begin{equation} Li_{s}(z) := \sum\limits_{k=1}^\infty k^{-s} z^k = \frac{z}{\Gamma(s)} \int\limits_0^\infty \frac{\theta^{s-1}}{e^\theta-z} d \theta \end{equation} The identity holds whenever $Re(s) > 0$. Now my question is twofold.
Firstly, how do we analytically continue that function to the area $Re(s) <0$? Clearly this must be possible because it was already Riemann who found a corresponding reflection formula by deforming the integration contour to the complex plane and evaluating that integral both in a clock-wise and in a anti-clockwise direction.
My second question would be how do we compute two dimensional functions of that kind. To be precise I am interested in quantities like this:
\begin{equation} Li_{s_1,s_2}^{(\xi_1,\xi_2)}(z_1,z_2) := \sum\limits_{1 \le k_1 < k_2 < \infty }(k_1+\xi_1)^{-s_1} (k_2+\xi_2)^{-s_2} z_1^{k_1} z_2^{k_2-k_1} \end{equation} Clearly if both $Re(s_1) >0$ and $Re(s_2) >0$ the quantity above has a following integral representation: \begin{equation} Li_{s_1,s_2}^{(\xi_1,\xi_2)}(z_1,z_2) = \frac{z_1 z_2}{\Gamma(s_1) \Gamma(s_2)} \int\limits_{{\mathbb R}_+^2} \frac{\theta_1^{s_1-1} \theta_2^{s_2-1} e^{-\theta_1 \xi_1-\theta_2 \xi_2}}{\left(e^{\theta_1+\theta_2}-z_1\right)\left(e^{\theta_2}-z_2\right)} d\theta_1\theta_2 \end{equation} However how do I compute the quantity if any of the real parts of the $s$-parameters becomes negative?