$$ \begin{align} &271x\equiv 210\!\!\pmod{\!266}\\[.1em]
\iff\ &217x-266y\,=\,210\\[.1em]
\iff\ &31x - 38y\,=\,30,\ \ \ {\rm by}\ \ {\rm cancelling}\ \ \ 7 = \gcd(271,210,266)\\[.1em]
\iff\ & \color{#c00}{31x\equiv 30}\!\!\pmod{\!38}\end{align}$$
Therefore $\ {\rm mod}\,\ \color{#0a0}{38}\!:\ \ \color{#c00}{x\equiv \dfrac{30}{31}}\equiv\dfrac{-8}{-7}\equiv\dfrac{-40}{-35}\equiv\dfrac{-2}{3}\equiv \dfrac{36}{3}\equiv\color{#0a0}{12}\ $ by Gauss's algorithm.
Hence $\ x = \underbrace{\color{#0a0}{12\!+\!38}\,n = 12\!+\!38(j\!+\!7k)}_{\begin{align}\large {\rm write}\ \ n\ =\ j\ +\ 7k\ \ \text{by division }\\ \large \text{where }\ 0\le j< 7\end{align}} \equiv 12\!+\!38j \pmod{\!266},\,\ j = 0,1,\ldots,6.$