How do we show that the given result by Mathematica is correct?
$$\int_{0}^{\infty}{\cos(x^n)-\cos(x^{2n})\over x}\cdot{\ln{x}}\mathrm dx={12\gamma^2-\pi^2\over 2(4n)^2}\tag1$$ $n>0$
Where $\gamma=0.577216...$
I would try substitution, because it may help to simplify the problem into a manage integral to deal with.
$u=x^n$
$du=nx^{n-1}dx.$
$${1\over n}\int_{0}^{\infty}{\cos(u)-\cos(u^2)\over u^{1\over n}}\cdot{\ln{u^{1\over n}}}{\mathrm dx\over u^{n-1\over n}}={12\gamma^2-\pi^2\over 2(4n)^2}$$
Simplified to
$${1\over n^2}\int_{0}^{\infty}{\cos(u)-\cos(u^2)\over u}\cdot{\ln{u}}\mathrm du={12\gamma^2-\pi^2\over 2(4n)^2}$$
We can remove $\ln{u}$ by doing another substitution
$v=\ln{u}$
$udv=du$
$${1\over n^2}\int_{-\infty}^{\infty}{\cos(e^v)-\cos(e^{2v})\over e^v}\cdot{v}\cdot{e^v}\mathrm du={12\gamma^2-\pi^2\over 2(4n)^2}$$
Then we finally simplified to
$$={1\over n^2}\int_{-\infty}^{\infty}v\cos(e^v)\mathrm dv -{1\over n^2}\int_{-\infty}^{\infty}v\cos(e^{2v})\mathrm dv$$
At this stage I would apply integration by parts but it seems to show a problem for me to do. So I need some help. Thank you.