How to show that for sequence $x_1=2$, and $x_{n+1}=\frac12\big(x_n+\frac2{x_n}\big)$; for all $n$, $(x_n)^2>2$ ?
I tried using induction: let $(x_k)^2>2$, so $(x_{k+1})^2=\frac14\big(x_k^2+\frac4{x_k^2}+4\big)>\frac32+\frac1{x_k^2}$. I can't go further!