2

How to show that:

$\forall k\in\mathbb{N}^*$ and $\forall x\in\mathbb{R}^*$, the inequality $\left(kx-1\right)e^{kx}>-1$ holds.

Thank you for your help.

PMC1234
  • 182

2 Answers2

2

It results from the variations of $f$ on $\mathbf R$: $f'(x)=k^2x\mathrm e^{kx}$, so $f$ decreases on $\mathbf R^-$, increases on $\mathbf R^+$ and has a minimum at $x=0$, hence for $x\ne 0$, $f(x)>f(0)=-1$.

Bernard
  • 175,478
0

We consider the function $f$ defined on $\mathbb{R}$ such that $f(x)=(kx-1)e^{kx}$ with $k$ a natural integer (excluding zero).

Let $X=kx$. We then have $f(X)=(X-1)e^X$. Let's show that $f$ is strictly superior to $-1$.

$f$ is differentiable on $\mathbb{R}$ where: \begin{align*} \forall X\in\mathbb{R},\ f'(X)&=\left((X-1)e^X\right)'\\ &=Xe^X \end{align*} Knowing that $e^X>0$ on $\mathbb{R}$, then $f'$ is of the sign of $X$. $f$ is strictly decreasing for $X<0$ and strictly increasing for $X>0$. Hence, the function has a minimum at $X=0$ which equals: \begin{align*} f(0)&=(0-1)e^0\\ &=-1 \end{align*} Thus, if we exclude X=0, we have a fortiori, $f(X)>f(0)\Leftrightarrow f(x)>-1\Leftrightarrow (kx-1)e^{kx}>-1$.

Bernard
  • 175,478
PMC1234
  • 182