0

Let $R$ be a commutative ring, $a, b \in R$, and $c, d \in (a, b)$. Under which conditions is $(a, b) = (c, d)$?

Let $c = x'\cdot a + y'\cdot b$ and $d = x''\cdot a + y''\cdot b$. Then

$$ \begin{align} (c, d) &= \{ xc + yd \mid x, y \in R \} \\ &= \{ x(x'\cdot a + y'\cdot b) + y(x''\cdot a + y''\cdot b) \mid x, y \in R \} \\ &= \{ (xx' + yx'')a + (xy' + yy'')b \mid x, y \in R \}, \end{align} $$

so $(a, b) = (c, d)$ iff $(x', x'') = (y', y'') = (1)$. Is this correct? Can I state something better?

bbrot
  • 401

0 Answers0