-1

How do I calculate the limit $$\lim_{z\to0}\frac{1-\cos z}{z^2}$$

Bérénice
  • 9,367
Tamir
  • 1
  • 1

2 Answers2

3

As $z\rightarrow 0$, $\cos z = 1 - \frac{z^2}{2} + O(z^3)$.

Plugging this in, we have

$$\lim\limits_{z\rightarrow 0}\frac{1-\cos z}{z^2} = \lim\limits_{z\rightarrow 0}\frac{\frac{z^2}{2}-O(z^3)}{z^2} = \lim\limits_{z\rightarrow 0}\frac{1}{2}-O(z)=\frac{1}{2}$$

Tom
  • 3,289
0

Yes , Taylor series expansion of $cos(z) = 1 - \frac{z^{2}}{2} + \frac{z^{4}}{24} - ....$,so the limit is $\frac{1}{2}$ as when divided by $z^{2}$, the terms of the Taylor series tends to 0 except the $\frac{z^{2}}{2}$ term and when divided by $z^{2}$ leaves a $\frac{1}{2}$.

Hope this helps.

BAYMAX
  • 4,972