0

Prove that if ($X$ can be uncountable)$$M:=\sup\bigg{\{}\sum_{x\in X}|f(x)|:A\subseteq X, A \ \text{finite}\bigg\} < \infty $$ then the sets $\{x\in X:|f(x)|\geq{1}/{n} \}$ are finite with cardinality at most $nM$ for all positive integers n.
Where do I begin ? Why this result should be true ?

mathemather
  • 2,959

0 Answers0