The integral $I(a)=\int_0^{\infty}\sin(x^a)=\Im\int_0^{\infty}\exp(ix^a)$ is easily calulated by using the analyticality of the integrand: Rotate the the contour of integration by an angle of $\frac{\pi}{2a}$ to get $I(a)=\Im\left(e^{\frac{i\pi}{2a}}\int_0^{\infty}e^{-x^a} \right)$ or
$$
I(a)=\frac{1}{a}\Gamma\left(\frac{1}{a}\right)\sin\left(\frac{\pi}{2a}\right)
$$
Now let us have a look at
$$
P_n=\left(n^{\frac12}\prod_{r=1}^{n-1}I\left(\frac{n}r\right)\right)^{\frac1n}=n^{\frac1{2n}}\exp\left(\frac1n\underbrace{\sum_{r=1}^{n-1}\log\left(I\left(\frac{n}{r}\right)\right)}_{s_{n-1}}\right)
$$
Now we observe that $I(1)=0$ so $s_n=s_{n-1}$ so
$$
\frac{1}{n}s_{n-1}=\frac{1}{n}s_n=\frac{1}{n}\sum_{r=1}^{n}\log\left(\frac{r}{n}\sin\left(\frac{\pi r}{2n}\right)\Gamma\left(\frac{r}{n}\right)\right)
$$
which is the defintion of a Riemannian integral. Since also the prefactor in $P_n$ is finite ($n^{\frac{1}{2n}}\sim_{\infty}1$) we can split the limit
$$
L=\lim_{n\rightarrow\infty}P_n=\lim_{n\rightarrow\infty}n^{\frac{1}{2n}}\lim_{n\rightarrow\infty}e^{\frac{1}{n}s_n}=1\cdot e^J \,\,\quad \left(\star\right)
$$
where $J$ is given by
$$
J=\int_0^1\log(I(x))dx=\\\int_0^1\log(x)dx+\int_0^1\log\left(\sin\left(\frac{\pi }{2}x\right)\right)dx+\int_0^1\log\left(\Gamma(x)\right)dx
$$
or
$$
J=-1-\log(2)+\frac{1}{2}\log(2\pi)
$$
where we used a classic result by Raabe as well as this all time favourite.
We now can conclude from $\left(\star\right)$ that
$$
L=\frac{\sqrt{2\pi}}{2e}
$$
in accordance with @math110