An approach via linear maps:
1. $T:\mathbb{R}_5[x]\rightarrow{\mathbb{R}_5[x]},\quad T(p(x))=p(x+1)-p(x)$ is a linear map.
2. The matricial equation of $T$ with respect to the canonical basis of $\mathbb{R}_5[x]$ is$$\begin{bmatrix}{y_1}\\{y_2}\\{y_3}\\{y_4}\\{y_5}\\{y_6}\end{bmatrix}=\begin{bmatrix}{0}&{1}&{1}&{1}&{1}&{1}\\{0}&{0}&{2}&{3}&{4}&{5}\\{0}&{0}&{0}&{3}&{6}&{10}\\ {0}&{0}&{0}&{0}&{4}&{10}\\{0}&{0}&{0}&{0}&{0}&{5}\\{0}&{0}&{0}&{0}&{0}&{0}\end{bmatrix}\begin{bmatrix}{x_1}\\{x_2}\\{x_3}\\{x_4}\\{x_5}\\{x_6}\end{bmatrix}\quad (*)$$
3. Using $(*)$ we get: $$T^{-1}(x^4)=\left\{{\alpha -x/30+x^3/3-x^4/2+x^5/5:\alpha \in{\mathbb{R}}}\right\}$$
4. Consider $h(x)\in{T^{-1}(x^4)}$ with $\alpha=0$. Then $T(h(x))=x^4$ i.e. $h(x+1)-h(x)=x^4$.
5. For $x=1,2,\ldots,n$ we get:
$$\begin{aligned}
&h(2)-h(1)=1^4\\
&h(3)-h(2)=2^4\\
&h(4)-h(3)=3^4\\
&\ldots\\
&h(n+1)-h(n)=n^4.
\end{aligned}$$
6. Simplifying: $h(n+1)-h(n)=1^4+2^4+\ldots+n^4=S_4$. That is
$$S_4=h(n+1)-h(1)=$$ $$-\displaystyle\frac{n+1}{30}+\displaystyle\frac{(n+1)^3}{3}-\displaystyle\frac{(n+1)^4}{2}+\displaystyle\frac{(n+1)^5}{5}+\displaystyle\frac{1}{30}-\displaystyle\frac{1}{3}+\displaystyle\frac{1}{2}-\displaystyle\frac{1}{5}$$ $$=S_4=1^4+2^4+3^4+\ldots+n^4=\dfrac{n(2n+1)(n+1)(3n^2+3n-1)}{30}.$$