By change of variables $y =x^{-b}$ we have,
$$ \int_{0}^{1} |x^{a-b-1 \cos(x^{-b})}|dx = -\frac{1}{b}\int_{1}^{\infty}\frac{|\cos y|}{y^{\frac{-a}{b}}} dy=-\frac{1}{b}\int_{1}^{\infty}\frac{|\cos y|}{y^{\alpha}} dy$$
With $\alpha=\frac{-a}{b}$.
by continuity we have the convergence of $$\int_{1}^{\frac{\pi}{2}}\frac{|\cos y|}{y^{\alpha}} dy<\infty.~~\forall~~\alpha$$
Now, suppose $\alpha>0$ Then, we have, $$\int_{\frac{\pi}{2}}^{\infty} \frac{|\cos y|}{y^{\alpha}}\,dy =\lim_{n\to \infty} \sum_{k=0}^{n}\int_{\frac{\pi}{2}+k\pi }^{\frac{\pi}{2}+(k+1)\pi}\frac{|\cos y|}{y^{\alpha}}\,dy=\sum^{\infty}_{k=0}a_k$$
Where
$$ a_k = \int_{\frac{\pi}{2}+k\pi }^{\frac{\pi}{2}+(k+1)\pi}\frac{|\cos y|}{y^{\alpha}}\,dy =\int_{0 }^{\pi}\frac{|\cos (\frac{\pi}{2}+k\pi+t)|}{(\frac{\pi}{2}+k\pi+t)^{\alpha}}\,dt =\int_{0 }^{\pi}\frac{\sin t}{(\frac{\pi}{2}+k\pi+t)^{\alpha}}\,dt \tag{I}\label{I}$$
$ |\cos (\frac{\pi}{2}+k\pi+t)| = |\sin (k\pi +t)| =\sin t$ for $0\le t\le \pi$
Moreover, we also have,that
$$0\le t \le \pi\implies \frac{1}{(\frac{\pi}{2}+(k+1)\pi)^{\alpha}}\le \frac{1}{(\frac{\pi}{2}+k\pi +t)^{\alpha}}\le \frac{1}{(\frac{\pi}{2}+k\pi)^{\alpha}} $$
This implies that $$\frac{2}{(\frac{\pi}{2}+k\pi)^{\alpha}}\,dt\le a_k =\int_{0 }^{\pi}\frac{\sin t}{(\frac{\pi}{2}+k\pi+t)^{\alpha}}\,dt\le \frac{2}{(\frac{\pi}{2}+(k+1)\pi)^{\alpha}}$$
since $\int_0^{\pi}\sin t dt =2$
If $\alpha \lt 0$ then, we have the reverse inequality i.e
$$\frac{2}{(\frac{\pi}{2}+k\pi)^{\alpha}}\,dt\ge a_k =\int_{0 }^{\pi}\frac{\sin t}{(\frac{\pi}{2}+k\pi+t)^{\alpha}}\,dt\ge \frac{2}{(\frac{\pi}{2}+(k+1)\pi)^{\alpha}}$$
In any case we obtain that, $$a_k \sim \frac{1}{k^\alpha}$$
that is $$ \frac{C_1}{k^\alpha}\le a_k \le \frac{C_2}{k^\alpha}$$
By the wel konw Rieamnn series, we know that the series $\sum a_k$ converges iff $\alpha>1.$
hence from \eqref{I} we deduce that,
$$\int_{\frac{\pi}{2}}^{\infty} \frac{|\cos y|}{y^{\alpha}}\,dy =\sum^{\infty}_{k=0}a_k <\infty \Longleftrightarrow \color{red}{\alpha = \frac{-b}{a}>1} $$