Partial Hint and too long for a comment :
Case where two varaibles are superior two one .
If we define :
$$f\left(x\right)=\frac{1}{e^{x}+3}-\frac{e^{x}}{e^{2x}+3},g\left(x\right)=\ln\left(1+e^{-x}\right)-\ln\left(2\right)$$
Show that for $x\in(-\infty,\infty)$ :
$$f''(x)+g''(x)>0$$
Now apply Jensen's inequality on two variable .
Remains to show :
$$-\left(g\left(a\right)+g\left(b\right)-2g\left(\frac{-c}{2}\right)\right)+f\left(c\right)\geq 0$$
Or :
$$-\left(g\left(a\right)+g\left(b\right)-2g\left(\frac{-c}{2}\right)\right)+\ln\left(f\left(c\right)+1\right)\geq 0$$
Wich is true for $a+b+c=0, a,b\in(0,2) \operatorname{or} a,b\in(2,\infty)$,
Last hint remark with the constraint $x,y\in [1,\infty)$:
$$\frac{\left(1+\frac{1}{xy+3}-\frac{xy}{\left(xy\right)^{2}+3}\right)\left(1+\sqrt{xy}\right)^{2}}{\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)}\ge \frac{\left(3+\frac{1}{xy+3}-\frac{xy}{\left(xy\right)^{2}+3}\right)\left(3+\sqrt{xy}\right)^{2}}{3\left(3+\frac{1}{x}\right)\left(3+\frac{1}{y}\right)}\ge \frac{4\left(3+\frac{1}{xy+3}-\frac{xy}{\left(xy\right)^{2}+3}\right)\left(3+\sqrt{xy}\right)}{3\left(3+\frac{1}{x}\right)\left(3+\frac{1}{y}\right)}\ge1$$
Case where two variable are less than one
Now consider the function :
$$p\left(x\right)=\frac{1}{x+3}-\frac{x}{x^{2}+3}$$
There exists a positive constant $C$ and $b\in(0,1),x>0$ such that :
$$p\left(Cx\right)-p\left(Cx^{b}\right)\geq 0$$
$$C=\left(3-2\sqrt{2}\right)^{\frac{1}{3}}+\left(3+2\sqrt{2}\right)^{\frac{1}{3}}$$
To be continued...