Supposing that $0 \le b_n < 1$ $\forall n \in N_+$ and that $\lim_{n \to \infty} nb_n = 0$, how can I deduce that $\lim_{n \to \infty}(1+b_n)^n = 1$, I can prove that $\lim_{n \to \infty}(1-b_n)^n = 1$ but I am not sure if this helps or not.
Thanks!