2

Supposing that $0 \le b_n < 1$ $\forall n \in N_+$ and that $\lim_{n \to \infty} nb_n = 0$, how can I deduce that $\lim_{n \to \infty}(1+b_n)^n = 1$, I can prove that $\lim_{n \to \infty}(1-b_n)^n = 1$ but I am not sure if this helps or not.

Thanks!

2 Answers2

4

Let $0 < \epsilon < 1$. Since $\lim\limits_{n\to \infty} nb_n = 0$, there exists a positive integer $N$ such that $b_n < \frac{\epsilon}{n}$ for all $n > N$. Thus, if $n > N$,

$$\lvert (1 + b_n)^n - 1\rvert = \sum_{k = 1}^n \binom{n}{k}b_n^k < \sum_{k = 1}^n \binom{n}{k}\frac{\epsilon^k}{n^k} \le \sum_{k = 1}^n \frac{\epsilon^k}{k!} < \sum_{k = 1}^n \frac{\epsilon}{2^{k-1}}< 2\epsilon$$

Consequently, $\lim\limits_{n\to \infty} (1 + b_n)^n = 1$.

kobe
  • 41,901
  • 2
    This is (so far, one never knows what the future brings) the only correct answer here. – Daniel Fischer Jan 09 '17 at 16:07
  • Will you please justify the two inequalities $\sum_{k=1}^N \binom{n}{k}\dfrac{\epsilon^k}{n^k}\le \sum_{k=1}^N \dfrac{\epsilon^k}{k!}$ – Learnmore Jan 09 '17 at 16:32
  • @learnmore It follows from the fact that $\binom{n}{k}\frac{1}{n^k} \le \frac{1}{k!}$. Indeed, $$\binom{n}{k}\frac{1}{n^k} = \frac{n(n-1)\cdots(n-k+1)}{k!n^k} = \left(1 - \frac{1}{n}\right)\cdots\left(1 - \frac{k-1}{n}\right)\frac{1}{k!} \le \frac{1}{k!}$$ – kobe Jan 09 '17 at 16:38
0

Hint for $(1+b_n)^n$.

By Binomial theorem, we get $$(1+b_n)^n=1+nb_n+\frac{n(n-1)}{2}{b_n}^2+\cdots {b_n}^n $$

So $$\lim_{n\rightarrow \infty}(1+b_n)^n = \lim_{n\to \infty} (1+nb_n+\frac{n(n-1)}{2}{b_n}^2+\cdots {b_n}^n )$$ All the terms go to $0$ because of the facts that $0\leq b_n<1$ and that $\lim_{n\to \infty} nb_n=0$.

Similarly for $(1-b_n)^n$.

seeker
  • 1,468