Let $e$ be the number represented as the limit
$$e=\lim_{n\to \infty}\left(1+\frac1n\right)^n$$
It is easy to show (See Here) that the sequence $\left(1+\frac1n\right)^n$ is monotonically increasing. It is also straightforward to show that the sequence is bounded above by $3$. Hence, the limit exists.
From the binomial theorem, we can write
$$e=\lim_{n\to \infty}\left(1+\frac1n\right)^n=\lim_{n\to \infty}\sum_{k=0}^n\binom{n}{k}\frac1{n^n}$$
Next, we note that for all $0\le k\le n$
$$\binom{n}{k}\frac{1}{n^n}=\frac1{k!}\left(1-\frac1n\right)\left(1-\frac2n\right)\cdots \left(1-\frac{k-1}n\right)\le \frac1{k!}$$
Therefore, we see that
$$\left(1+\frac1n\right)^n=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^n}\le \sum_{k=0}^n\frac1{k!}$$
Taking the $\limsup$ as $n\to \infty$ reveals
$$\begin{align}
e&\le \limsup_{n\to \infty}\sum_{k=0}^n\frac1{k!}\\\\
&=\lim_{n\to \infty}\sum_{k=0}^n\frac1{k!}\tag1
\end{align}$$
where we used the fact that $\sum_{k=0}^\infty\frac1{k!}$ converges (apply the ratio test, for example) to arrive at $(1)$.
Next, we fix $m\le n$. Then, clearly
$$\begin{align}
\left(1+\frac1n\right)^n&=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^n}\\\\
&\ge \sum_{k=0}^m \left(1-\frac1n\right)\left(1-\frac2n\right)\cdots \left(1-\frac{k-1}n\right)\frac1{k!}
\end{align}$$
With $m$ fixed, we take the limit as $n\to \infty$ and find that
$$e\ge \sum_{k=0}^m\frac{1}{k!} \tag 2$$
Then, we let $m\to \infty$ in $(2)$ to obtain
$$e\ge \sum_{k=0}^\infty\frac1{k!} \tag 3$$
Finally, putting together $(1)$ and $(3)$ yields
$$e=\sum_{k=0}^\infty\frac{1}{k!}$$
whence we see that
$$e-1=\sum_{k=1}^\infty \frac{1}{k!}$$
And we are done!