Lemma: Let $K$ be a field, and $G\subseteq Aut (K(x)/K)$ a finite subgroup of order $n$. Then the polynomial
$$p(T):=T^n+a_{n-1}T^{n-1}+\ldots+a_1T+a_0 =\prod_{\sigma \in G}(T-\sigma x)$$
is defined over the fixed field $K(x)^G$, and for any $i\in \{0,1,\ldots,n-1\}$ such that $a_i\notin K$, we have $K(x)^G=K(a_i).$
Proof: Note that the $\pm a_i$'s are given by the elementary symmetric polynomials (in $n$ variables) evaluated at
$(\sigma_1x,\ldots,\sigma_n x)$. Thus $\sigma a_i=a_i$ for all $\sigma \in G$, which gives $p(T)\in K(x)^G[T ]$. Also, since $x$ is transcendental over $K$ and
$p(x)=0$, there must exist $i\in \{0,1,\ldots,n-1\}$ such that $a_i\notin K$. For any such $a_i$, we have $a_i=g(x)/f(x)$, where $f, g\in K[x]$ are polynomials of degree $\leq n$.
Therefore, $g(T)-a_if(T) \in K(a_i)[T]$ is a polynomial of degree $\leq n$ vanishing at $x$, and then $[K(x):K(a_i)]\leq n$. Now, since $K(a_i)\subseteq K(x)^G \subseteq K(x)$, and $[K(x):K(x)^G]=|G|=n$ (Artin's thm), it follows that $K(a_i)=K(x)^G$. q.e.d.
Now, for $K:=\mathbb{F}_q$ and $G:=\{x\mapsto ax+b|(a,b)\in K^*\times K\}\subseteq Aut(K(x)/K)$, we have
$$p(T)=\prod\limits_{\sigma \in G}(T-\sigma(x))=\prod\limits_{(a,b)\in K^*\times K}(T-(ax+b)).$$ Since
$$a_0:=p(0)=\prod\limits_{(a,b)\in K^*\times K}(-(ax+b))=-(x^q-x)^{q-1} \notin K,$$
the previous Lemma gives $K(x)^G=K((x^q-x)^{q-1})$.