In $S_9$ I want to find the order for the permutation $(2,9,6,3,7)(4,8)$
My result is that the order should be 8. Wolfram Alpha tells me instead that it is 10.
Question: Why is the order of the given permutation 10?
According to this post I have done following:
$$ord \pi := min{\{ k \in \mathbb N | \pi^{k} = id_x\}}$$
so: $$ord((2,9,6,3,7)(4,8)) = lcm(n,m)$$ for: $$(2,9,6,3,7)^n=(1) \quad \& \quad (4,8)^m=(1)$$
for $(4,8)^n = (1):$ $${ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 8 & 5 & 6 & 7 & 4 & 9 \\ \end{pmatrix} } \cdot {\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 8 & 5 & 6 & 7 & 4 & 9 \\ \end{pmatrix} } $$
$$={\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \end{pmatrix} } \quad n = 2$$
for $(2,9,6,3,7)^m = (1):$
$$ {\pi^0: \quad}{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 9 & 7 & 4 & 5 & 3 & 2 & 8 & 6 \\ \end{pmatrix}}$$
$$ {\pi^1: \quad}{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 6 & 2 & 4 & 5 & 7 & 9 & 8 & 3 \\ \end{pmatrix}}$$
$$ {\pi^2: \quad}{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 7 & 6 & 4 & 5 & 9 & 3 & 8 & 2 \\ \end{pmatrix}}$$
$$ {\pi^3: \quad}{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3 & 9 & 4 & 5 & 2 & 6 & 8 & 7 \\ \end{pmatrix}}$$
$$ {\pi^4: \quad}{ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 9 & 7 & 4 & 5 & 3 & 2 & 8 & 6 \\ \end{pmatrix}} \quad m = 4$$
So according to:
So the order of σσ is exactly the smallest natural number n such that $(4,5)n=(1)(4,5)n=(1) and (2,3,7)n=(1)$$(2,3,7)n$$=(1)$ (think about this fact for a moment).
The order should be $n \cdot m = 2 \cdot 4$