I'm reading a paper, it states that following is true: $$\frac{1}{2}((C_{0} ^{n})^{2}+(C_{1}^{n})^{2}+(C_{3}^{n})^{2}...+(C_{n}^{n})^{2})=\frac{2^{2n}(n-\frac{1}{2})!}{2\sqrt{\pi}n!}\leq \frac{2^{2n}}{2\sqrt{\pi}}$$ where n is positive integer.
My question is: how to achieve $\frac{2^{2n}(n-\frac{1}{2})!}{2\sqrt{\pi}n!}$? I guess it needs helps of following:
$(C_{0}^{n})^{2}+(C_{1}^{n})^{2}+(C_{3}^{n})^{2}...+(C_{n}^{n})^{2})=C_{n}^{2n}$
$\Gamma(\frac{1}{2}+n)=\frac{(2n)!}{4^{n}n!}\sqrt{\pi}=\left( \begin{array}{ll}n-\frac{1}{2}\\n\end{array} \right) n! \sqrt{\pi}$
Could any one tell me about how to do this? thanks