Show in two different way that,
$$\arctan\left({\frac{x+y}{1-xy}}\right) = \arctan\left(x\right) + \arctan\left(y\right) $$
The first way I know derive from the addition formula of tangent
$$ \frac{ \tan\left(x\right)+ \tan\left(y\right)}{1- \tan(x) \tan(y)} = \tan\left(x+y \right). $$