Let $\mathbb{F}[x]$ be the ring polynomials in one variable $x$ over a field $\mathbb{F}$ with the relation $x^n=0$,for a fixed $n$,is a natural number.Then What is dimension of $\mathbb{F}[x]$ over $\mathbb{F}$?
a) $1$
b) $n-1$
c) $n$
d) $\infty$