Let us consider the Fourier Cosine Transform:
$$\mathcal{F}_{c} (f(x))= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \cos(xy) \ dx ,$$ and the integral inner product on $L^2(\mathbb{R})$ which is $$\langle f(x),g(x) \rangle= \int_{-\infty}^{\infty} f(x)g(x) \ dx.$$
It turns out that $\mathcal{F}_{c}$ is a unitary operator, which means $$\langle f(x),g(x) \rangle=\langle \mathcal{F_c}(f(x)),\mathcal{F_c}(g(x)) \rangle $$ which can be seen by the Fourier Inversion theorem, or with this (heuristic) proof below (similar to Wikipedia's proof).
$$\langle \mathcal{F_c}(f(x)),\mathcal{F_c}(g(x)) \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(z) \cos(zy) \cos(xy) \ dz \ dx \ dy.$$ Reversing the order of integration,
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(z) \cos(zy) \cos(xy) \ dy \ dz \ dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(z) \delta(x-z) \ dz \ dx$$
$$= \int_{-\infty}^{\infty} f(x)g(x) \ dx.$$
Now let us consider $$f(x)=g(x)= e^{-\pi^{\frac{1}{6}} |x|}$$ It can be shown by integration by parts that $$\mathcal{F}_c(f(x)) = \frac{1}{\sqrt{2 \pi}}\frac{2 \pi^{\frac{1}{6}}}{\pi^{\frac{1}{3}} +y^2}.$$
$$\langle f(x),g(x) \rangle= \int_{-\infty}^{\infty} e^{-2\pi^{\frac{1}{6}} |x|} \ dx=2\int_{0}^{\infty} e^{-2\pi^{\frac{1}{6}} x} \ dx= \frac{1}{\pi^{\frac{1}{6}}}.$$
On the other hand, exploiting the unitary property, this is equal to $$\langle \mathcal{F_c}(f(x)),\mathcal{F_c}(g(x)) \rangle = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{4\pi^{\frac{1}{3}}}{(\pi^{\frac{1}{3}} +y^2)^2} \ dy.$$ This implies by rearranging constants
$$\frac{1}{2} \sqrt{\pi} = \int_{-\infty}^{\infty} \frac{1}{(\pi^{\frac{1}{3}} +y^2)^2} \ dy.$$
Finally, let $y=\sqrt{\pi} (u+e^{\pi}),$ so that $dy = \sqrt{\pi} du.$ The final result, upon rearranging constants is
$$\frac{1}{2}= \int_{-\infty}^{\infty} \frac{1}{\left(\pi(u+e^\pi)^2 + \pi^{\frac{1}{3}}\right)^2} \ du.$$