Find the value of $\cos^{-1}\left({{-\sqrt 3}\over 2}\right)$
Let $\cos^{-1}\left({{-\sqrt 3}\over 2}\right) = y$
$\Rightarrow$ $\cos y = {{-\sqrt3}\over 2}$
I) $\cos y=\cos\left({-\pi\over6}\right)$
$\cos y=\cos\left(\pi - {\pi\over6}\right)$
$\Rightarrow$ $\cos y=\cos\left({5\pi\over6}\right)$
$\Rightarrow$ $y={5\pi\over6}$ $\epsilon$ $\left[0,\pi\right]$
II) $\cos y = {{-\sqrt3}\over 2}$
$\Rightarrow$ $\cos y = \cos\left({-\pi\over6}\right)$
Since, $\cos(-x) = \cos(x)$
$\Rightarrow$ $\cos y = \cos\left({\pi\over6}\right)$
$\Rightarrow$ $y={\pi\over6}$ $\epsilon$ $\left[0,\pi\right]$
The I) is my textbok solution, and
II) is what i came up with.
Is my answer (II) correct?