I saw the following statement and I'm not sure how to prove it:
Given a constant value $\beta \in \mathbb{R}$, if $\frac{\beta}{\pi}$ is irrational, then for some value $\alpha \in [0, 1]$, $\forall\epsilon \in \mathbb{R}:\epsilon > 0$, $\exists n \in \mathbb{N} : |\sin(n\beta) - \alpha| < \epsilon$