$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\int_{0}^{1}\int_{0}^{1}{x \over 1 - xy}\,
{\ln\pars{x} - \ln\pars{y} \over \ln\pars{x} + \ln\pars{y}}\,\dd x\,\dd y =
1 - 2\gamma\,,\qquad\gamma:\ Euler\mbox{-}Mascheroni\ Constant}$.
\begin{align}
&\int_{0}^{1}\int_{0}^{1}{x \over 1 - xy}\,
{\ln\pars{x} - \ln\pars{y} \over \ln\pars{x} + \ln\pars{y}}\,\dd x\,\dd y
\\[5mm] = &\
\left.\partiald{}{\mu}\int_{0}^{1}\int_{0}^{1}{x \over 1 - xy}
\pars{x^{\mu} - y^{\mu}}
\bracks{-\int_{0}^{\infty}\pars{xy}^{\,t}\,\dd t}\,\dd x\,\dd y\,
\right\vert_{\ \mu\ =\ 0}
\\[5mm] = &\
\left.\partiald{}{\mu}\int_{0}^{\infty}\int_{0}^{1}\int_{0}^{1}
{x^{t + 1}y^{t + \mu} - x^{t + \mu + 1}y^{t} \over 1 - xy}
\,\dd x\,\dd y\,\dd t\,\right\vert_{\ \mu\ =\ 0}
\\[5mm] = &\
\left.\partiald{}{\mu}\int_{0}^{\infty}\int_{0}^{1}\int_{0}^{y}
{x^{t + 1}y^{\mu - 2} - x^{t + \mu + 1}y^{-\mu - 2} \over 1 - x}
\,\dd x\,\dd y\,\dd t\,\right\vert_{\ \mu\ =\ 0}
\\[5mm] = &\
\left.\partiald{}{\mu}\int_{0}^{\infty}\int_{0}^{1}\int_{x}^{1}
{x^{t + 1}y^{\mu - 2} - x^{t + \mu + 1}y^{-\mu - 2} \over 1 - x}
\,\dd y\,\dd x\,\dd t\,\right\vert_{\ \mu\ =\ 0}
\\[5mm] = &\
\left.\partiald{}{\mu}\int_{0}^{\infty}\int_{0}^{1}
\pars{x^{t + 1}\,{1 - x^{\mu - 1} \over \mu - 1} +
x^{t + \mu + 1}\,{1 - x^{-\mu - 1}\over \mu + 1}}
{\dd x\,\dd t \over 1 - x}\,\right\vert_{\ \mu\ =\ 0}
\\[5mm] = &\
\left.\partiald{}{\mu}\int_{0}^{\infty}\int_{0}^{1}
\pars{{1 \over \mu - 1}\,{x^{t + 1} - x^{t + \mu} \over 1 - x} +
{1 \over \mu + 1}\,{x^{t + \mu + 1} - x^{t} \over 1 - x}}
\dd x\,\dd t\,\right\vert_{\ \mu\ =\ 0}
\\[5mm] = &\
\left.\partiald{}{\mu}\int_{0}^{\infty}
\bracks{{\Psi\pars{t + \mu + 1} - \Psi\pars{t + 2} \over \mu - 1} +
{\Psi\pars{t + 1} - \Psi\pars{t + \mu + 2} \over \mu + 1}}
\dd t\,\right\vert_{\ \mu\ =\ 0}
\\[5mm] = &\
\left.\partiald{}{\mu}\bracks{%
{1 \over \mu - 1}\,\ln\pars{\Gamma\pars{t + \mu + 1} \over \Gamma\pars{t + 2}} +
{1 \over \mu + 1}\,\ln\pars{\Gamma\pars{t + 1} \over \Gamma\pars{t + \mu + 2}}}
_{\ t\ =\ 0}^{\ t\ \to\ \infty}\,
\right\vert_{\ \mu\ =\ 0}
\\[5mm] = &\
\partiald{}{\mu}\bracks{%
-\,{\ln\pars{\Gamma\pars{\mu + 1}} \over \mu - 1} +
{\ln\pars{\Gamma\pars{\mu + 2}} \over \mu + 1}}_{\ \mu\ =\ 0} =
\Psi\pars{1} + \Psi\pars{2} = 2\Psi\pars{1} + 1 =
\bbx{\ds{1 - 2\gamma}}
\end{align}
the inner integral is straightforward and you only need integral representation 5 from here https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant#Integrals
– tired Jan 03 '17 at 11:27