For $0 < p < 1$, compute the integrals $$\int_0^\infty x^{p-1} \cos x \,dx, \quad \int_0^\infty x^{p-1} \sin x \,dx$$
I tried by integrating the function $z^{(p-1)}e^{-z}$ over the union of the segment $[r,R]$, arc $e^{i \theta}$, $\theta \in [0,\pi/2]$, segment $[ir,iR]$ and arc $e^{i \theta}$, $\theta \in [\pi/2,0]$ but i am stuck with the integration.
Any other approach or any help will be truly appreciated.