In THIS ANSWER, I showed that
$$\bbox[5px,border:2px solid #C0A000]{\int_0^1 \left(\frac{x^{2n}-x}{1+x}\right)\,\frac{1}{\log(x)}\,dx=\log\left(\frac{2}{\pi}\frac{(2n)!!}{(2n-1)!!}\right)}$$
We can use this result to evaluate the integral
$$\begin{align}
\int_0^1 \left(\frac{x^{2n+1}-x}{1+x}\right)\,\frac{1}{\log(x)}\,dx&=\int_0^1 \left(\frac{x^{2n+1}-x^2+(x^2-x)}{1+x}\right)\,\frac{1}{\log(x)}\,dx\\\\
&=\int_0^1 \left(\frac{x^{2n+1}-x^2}{1+x}\right)\,\frac{1}{\log(x)}\,dx+\log(4/\pi)\\\\
&=\int_0^1 \frac{x^{2n}-x}{\log(x)}\,dx+\log(4/\pi)-\log\left(\frac{2}{\pi}\frac{(2n)!!}{(2n-1)!!}\right)\tag1
\end{align}$$
The integral on the right-hand side of $(1)$ can be evaluated by enforcing the substitution $x\to e^{-x}$ and evaluating the resulting FRULLANI INTEGRAL. Proceeding, we have
$$\int_0^1 \frac{x^{2n}-x}{\log(x)}\,dx=\log\left(\frac{2n+1}{2}\right) \tag 2$$
Substituting $(2)$ into $(1)$ reveals
$$\begin{align}
\int_0^1 \left(\frac{x^{2n+1}-x}{1+x}\right)\,\frac{1}{\log(x)}\,dx&=\log\left(\frac{2n+1}{2}\right)+\log(4/\pi)-\log\left(\frac{2}{\pi}\frac{(2n)!!}{(2n-1)!!}\right)\\\\
&= \log\left(\frac{2}{\pi}(2n+1)\right)-\log\left(\frac{2}{\pi}\frac{(2n)!!}{(2n-1)!!}\right) \tag 3\\\\
&=\log\left(\frac{(2n+1)!!}{(2n)!!}\right)
\end{align}$$
Finally, we see that
$$\begin{align}
\int_0^1 \left(\frac{x+x^2+\cdots +x^{2n}-2nx}{1+x}\right)\,\frac{1}{\log(x)}\,dx&=\sum_{k=1}^n \int_0^1 \frac{x^{2k}-x}{1+x}\frac{1}{\log(x)}\,dx\\\\
&+\sum_{k=1}^{n-1}\int_0^1 \frac{x^{2k+1}-x}{1+x}\frac{1}{\log(x)}\,dx\\\\
&=\sum_{k=1}^n\log\left(\frac{2}{\pi}\frac{(2k)!!}{(2k-1)!!}\right)\\\\
&+\sum_{k=1}^{n-1}\log\left(\frac{2}{\pi}(2n+1)\right)\\\\
&-\sum_{k=1}^n\log\left(\frac{2}{\pi}\frac{(2k)!!}{(2k-1)!!}\right)\\\\
&=\log\left(\left(\frac{2}{\pi}\right)^n (2n)!!\right)
\end{align}$$
as was to be shown!