I have read this relation: if $y\in C(0,T;L^2(0,L))\subset L^2((0,T)\times (0,L))$ then $y_t\in L^2(0,L;H^{-1}(0,T))$
can anyone explain how to get this?
I know $y(t)(x)\in L^2(0,L)$, but why $y_t(x)(t)\in H^{-1}(0,T)$?
I found it is straightforward:
$y\in C(0,T;L^2(0,L))\subset L^2((0,T)\times (0,L))=L^2(0,L;L^2(0,T))$, hence $y(x)(t)\in L^2(0,T)$, then $y_t(x)(t)\in H^{-1}(0,T)$