With reference to my previous question : Show that $\int_0^\infty \frac{x\log(1+x^2)}{e^{2\pi x}+1}dx=\frac{19}{24} - \frac{23}{24}\log 2 - \frac12\log A$
The following integral should be manageable :
$$\int_0^\infty \frac{\log(1+x^2)}{e^{2\pi x}+1}dx = ?$$
But it seams that wolframalpha struggles to find a closed form solution.
Maybe the answer should be in terms Barnes G function or the derivative of the Hurwtiz zeta function.
Update
My attempt so far, consider
$$F(a,b) = \int^\infty_0 \frac{\log(a+t^2)}{e^{2\pi (t+b)}-1}\,dt$$
We consider the derivative
$$\frac{\partial }{\partial a}F(a,b) = \int^\infty_0 \frac{dt}{(t^2+a)(e^{2\pi (t+b)}-1)}\,dt$$
Use the following expansion
$$\frac{2t}{e^{2\pi t}-1} =\frac{1}{\pi}-t+\frac{2t^2}{\pi}\sum_{k=1}^\infty\frac{1}{k^2+t^2} $$
Hence have
$$\frac{1}{e^{2\pi (t+b)}-1} =\frac{1}{2(t+b)\pi}-\frac{1}{2}+\frac{t+b}{\pi}\sum_{k=1}^\infty\frac{1}{k^2+(t+b)^2} $$
$$\frac{\partial }{\partial a}F(a,b) = \int^\infty_0 \frac{1}{t^2+a}\left\{ \frac{1}{2(t+b)\pi}-\frac{1}{2}+\frac{t+b}{\pi}\sum_{k=1}^\infty\frac{1}{k^2+(t+b)^2}\right\}dt$$
This reduces to $$\frac{\partial }{\partial a}F(a,b)= \frac{1}{2\pi}\int^\infty_0 \frac{1}{(t^2+a)(t+b)} dt-\frac{1}{2}\int^\infty_0 \frac{dt}{t^2+a}+\\\frac{1}{\pi}\sum_{k=1}^\infty\int^\infty_0\frac{t+b}{(t^2+a)(k^2+(t+b)^2)}dt$$
The first and second are simple it remains to evaluate
$$\sum_{k=1}^\infty\int^\infty_0\frac{t+b}{(t^2+a)(k^2+(t+b)^2)}dt$$
Then integrate with respect to $a$.
Or evaluate
$$\sum_{k=1}^\infty\int^\infty_0\frac{\log(t^2+1)(t+b)}{k^2+(t+b)^2}dt$$
Where $b = i+1/2$.