Define a sequence $m_k \rightarrow \infty$ as $k\rightarrow\infty$. Then for each fixed $k >0$, we have that $P(|A_{m_k n}| > 2^{-k})\rightarrow 0$ as $n\rightarrow \infty$. In particular, there exists an $N_k$ such that
$$ P(|A_{m_k n}| > 2^{-k}) \leq k^{-1}$$
for all $n\geq N_k$. WLOG suppose that the sequence $(N_k)_{k\in\mathbb N}$ is strictly increasing. Define $m(n) = m_k$ , $r(n) = 2^{-k}$ whenever $N_k\leq n < N_{k+1}$. Then observe that $m(n)\rightarrow \infty$, and $r(n)\rightarrow 0$ as $n\rightarrow \infty$.
Now fix $\epsilon > 0$. Then there exists an $k^*$ such that $\epsilon > 2^{-k^*}$, and in particular
$
\begin{align*}
P(|A_{m(n)n}| > \epsilon) \leq P(|A_{m(n)n}|> 2^{-k^*}) \leq k^{*^{-1}},
\end{align*}
$
for $N_{k^*} \leq n < N_{k^*+1}$. Whenever $n> N_{k^*+1}$, observe that $r(n) \leq 2^{-k^*}$ and $P(|A_{m(n)n}| > r(n)) \leq (k^*+1)^{-1} \leq k^{*^{-1}}$ and therefore we have that
$$
P(|A_{m(n)n}| > \epsilon) \leq k^{*^{-1}}
$$
for all $n \geq N_{k^*}$. In fact, this argument can be applied to any $k>k^*$ and so we have that $P(|A_{m(n)n}| > \epsilon) \leq k^{-1}$ for all $n > N_k$. Therefore, we have constructed a sequence $m(n)$ diverging sufficiently slowly enough such that $|A_{m(n)n}| = o_p(1)$.