7

I am interested in computing the following integral $$\int_0^\infty \frac{1}{\sqrt{t}}\exp\left(-\frac{(x-t)^2}{t} - t\right)\, dt. $$ A hint is good enough for me!

Chee Han
  • 4,630
  • Possibly useful: $\frac{(x-t)^2+t^2}{t}=\frac{2t^2-2tx+x^2}{t}=\frac{2(t-\frac{1}{2}x)^2+\frac{1}{2}x^2}{t}$ – πr8 Jan 01 '17 at 00:19

1 Answers1

7

Hint. Make the change of variable $$ u=\sqrt{t}, \quad du=\frac{dt}{2\sqrt{t}}, $$ giving $$ \int_0^\infty \frac{1}{\sqrt{t}}\exp\left(-\frac{(x-t)^2}{t} - t\right)\, dt=\int_{-\infty}^\infty \exp\left(-2u^2-\frac{x^2}{u^2}-2 x\right)\, du $$ then use G. Boole's result:

$$ \int_{-\infty}^{+\infty}f\left(u-\frac{a}{u}\right)\mathrm{d}u=\int_{-\infty}^{+\infty} f(u)\: \mathrm{d}u,\quad a>0. $$

Olivier Oloa
  • 120,989
  • What are you proposing for $f$? I tried $f(x)=-x^2$ but I still have an extra $-u^2$ term. – Chee Han Jan 01 '17 at 00:36
  • 1
    One may observe that the argument of $\exp\left(-2u^2-\frac{x^2}{u^2}-2 x\right) $ rewrites $-2\left(u-\frac{x}{\sqrt{2}u}\right)^2-2\left(\sqrt{2}-1\right)x$. The term $-2\left(\sqrt{2}-1\right)x$ is a constant going 'outside' the integral. Thus $f(u)=\exp (-2u^2)$ is fine and easy to integrate over $\mathbb{R}$. – Olivier Oloa Jan 01 '17 at 00:41
  • Just did the calculation and it coincides with the given solution. Many thanks (: – Chee Han Jan 01 '17 at 01:01
  • @Chee Han You are very welcome. – Olivier Oloa Jan 01 '17 at 01:10
  • 1
    (Boole-)Glasser saves the day (again)...$(+1)$ – tired Jan 01 '17 at 10:25