How do we change [elementary way] $$\eta(s)=\sum_{n=0}^{\infty}{(-1)^n\over (n+1)^s}$$ into
$$\zeta(s)={1\over 1-2^{1-s}}\sum_{n=0}^{\infty}{1\over 2^{n+1}}\sum_{k=0}^{n}(-1)^k{n\choose k}(k+1)^{-s}$$
My try:
$${1\over 2}+{1\over 2^2}+{1\over2^3}+{1\over2^4}+\cdots=1$$
$${1\over 2^2}+{2\over 2^3}+{3\over2^4}+{4\over2^5}+\cdots=1$$
$${1\over 2^3}+{3\over 2^4}+{6\over2^5}+{10\over2^6}+\cdots=1$$
$${1\over 2^4}+{4\over 2^5}+{10\over2^6}+{20\over2^7}+\cdots=1$$
And so on ...
we expanded the eta function
$$\eta(s)=1-{1\over 2^s}+{1\over3^s}-{1\over4^s}+\cdots$$
$${1\over 1^s}\left({1\over 2}+{1\over 2^2}+{1\over2^3}+{1\over2^4}+\cdots\right)={1\over1^s}$$
$${1\over 2^s}\left({1\over 2^2}+{2\over 2^3}+{3\over2^4}+{4\over2^5}+\cdots\right)={1\over 2^s}$$
$${1\over3^s}\left({1\over 2^3}+{3\over 2^4}+{6\over2^5}+{10\over2^6}+\cdots\right)={1\over 3^s}$$
$${1\over 4^s}\left({1\over 2^4}+{4\over 2^5}+{10\over2^6}+{20\over2^7}+\cdots\right)={1\over 4^s}$$ collected the terms and we have $$\eta(s)={1\over2}\left(1\over1^s\right)+{1\over2^2}\left({1\over1^s}-{1\over2^s}\right)+{1\over2^3}\left({1\over1^s}-{2\over2^s}+{1\over3^s}\right)+\cdots$$
put in the sum notation
$$\eta(s)=\sum_{n=0}^{\infty}{1\over 2^{n+1}}\sum_{k=0}^{n}(-1)^k{n\choose k}(k+1)^{-s}$$
where
$$\zeta(s)={1\over 1-2^{1-s}}\sum_{n=0}^{\infty}{(-1)^n\over (n+1)^s}={1\over 1-2^{1-s}}\eta(s)$$
so we have
$$\zeta(s)={1\over 1-2^{1-s}}\sum_{n=0}^{\infty}{1\over 2^{n+1}}\sum_{k=0}^{n}(-1)^k{n\choose k}(k+1)^{-s}$$