I thought I would come back and show what I done. I am rather uneasy about this solution and you'll see why.
Using the identities mentioned previously:
$\displaystyle -\ln(\sin(x))=\sum_{k=1}^{\infty}\frac{\cos(2kx)}{k}+\ln(2)$
and $\displaystyle -\ln(\cos(x))=\sum_{k=1}^{\infty}\frac{(-1)^{k}\cos(2kx)}{k}+\ln(2)$
I subbed them in and arrived at:
$\displaystyle\int_{0}^{\frac{\pi}{2}}\left(\sum_{k=1}^{\infty}\frac{x\cos(2kx)}{k}+x\ln(2)\right)\left(\sum_{k=1}^{\infty}\frac{(-1)^{k}\cos(2kx)}{k}+\ln(2)\right)dx$
$=\displaystyle \int_{0}^{\frac{\pi}{2}}(\sum_{k=1}^{\infty}\frac{(-1)^{k}\cos(2kx)}{k}\sum_{k=1}^{\infty}\frac{x\cos(2kx)}{k} $
+$\displaystyle \ln(2)\sum_{k=1}^{\infty}\frac{x\cos(2kx)}{k}+\ln(2)\sum_{k=1}^{\infty}\frac{(-1)^{k}x\cos(2kx)}{k}+x\ln^{2}(2))dx$
Now, here I made an otherwise 'illegal' move. I took the product of the sums under one summation.
$\displaystyle\int_{0}^{\frac{\pi}{2}}(\sum_{k=1}^{\infty}\frac{(-1)^{k}x\cos^{2}(2kx)}{k^{2}}$
$+\displaystyle\ln(2)\sum_{k=1}^{\infty}\frac{x\cos(2kx)}{k}$
$+\displaystyle\ln(2)\sum_{k=1}^{\infty}\frac{(-1)^{k}x\cos(2kx)}{k}$ $+x\ln^{2}(2))dx$
Switch the sum and integral:
$\displaystyle\sum_{k=1}^{\infty}(\underbrace{\int_{0}^{\frac{\pi}{2}}\frac{(-1)^{k}x\cos^{2}(2kx)}{k^{2}}dx}_{\text{[1]}} $
$+\displaystyle\underbrace{\ln(2)\int_{0}^{\frac{\pi}{2}}\frac{x\cos(2kx)}{k}dx}_{\text{[2]}}$
$+\displaystyle\underbrace{\ln(2)\int_{0}^{\frac{\pi}{2}}\frac{(-1)^{k}x\cos(2kx)}{k}dx}_{\text{[3]}}$ $+\underbrace{\ln^{2}(2)\int_{0}^{\frac{\pi}{2}}xdx}_{\text{[4]}})dx$
$[1]:\displaystyle \frac{{\pi}^{2}}{16}\sum_{k=1}^{\infty}\frac{(-1)^{k}}{k^{2}}=\frac{-{\pi}^{4}}{192}$
$[2]: \ln(2)\left(\frac{-1}{4}\sum_{k=1}^{\infty}\frac{1}{k^{3}}+\frac{1}{4}\sum_{k=1}^{\infty}\frac{(-1)^{k}}{k^{3}}\right)$
$[3]: \displaystyle \ln(2)\left(\frac{-1}{4}\sum_{k=1}^{\infty}\frac{(-1)^{k}}{k^{3}}+\frac{1}{4}\sum_{k=1}^{\infty}\frac{1}{k^{3}}\right)$
$[4]: \displaystyle \ln^{2}(2)\int_{0}^{\frac{\pi}{2}}xdx=\frac{{\pi}^{2}\ln^{2}(2)}{8}$
[2] and [3] cancel one another out and I arrive at:
$\displaystyle\frac{{\pi}^{2}\ln^{2}(2)}{8}-\frac{{\pi}^{4}}{192}$
This worked out beautifully. Is it a fluke or can one manipulate sums, like I done above, under certain conditions?. Or did I actually manage to come up with a clever solution?.
Also sorry for the undersized parentheses. Every time I tried enlarging them, the Latex would not display. I have been wrestling with this for sometime trying to get it all to display. Thanks All.