Note that we can write
$$
74=1\cdot64+0\cdot32+0\cdot16+1\cdot8+0\cdot4+1\cdot2+0\cdot1.
$$
(In other words: $74$ in binary is $0b1001010$.)
We can proceed, then, by writing
$$
16^{74}=16^{64}\cdot16^{8}\cdot16^2
$$
and computing these powers modulo $65$ by repeated squaring.
A pattern quickly emerges in the repeated squaring:
$$
\begin{align*}
16^2&=256\equiv61\equiv-4\pmod{65}\\
16^4&=(16^2)^2\equiv(-4)^2\equiv16\pmod{65}\\
16^8&=(16^4)^2\equiv16^2\equiv-4\pmod{65}\\
16^{16}&=(16^8)^2\equiv16\pmod{65}\\
16^{32}&=(16^{16})^2\equiv-4\pmod{65}\\
16^{64}&=(16^{32})^2\equiv16\pmod{65}
\end{align*}
$$
So, we find that
$$
16^{74}\equiv16\cdot(-4)\cdot(-4)\equiv256\equiv-4\pmod{65}.
$$