Let $\gamma : I\subset \mathbb{R}\rightarrow \mathbb{R}^n $.
$\gamma'(a)=\lim_{t\rightarrow 0} \frac{\gamma(a+t)-\gamma(a)}{t}$.
For diff. at $a$, we must have $\lim_{t\rightarrow 0} \frac{||\gamma(a+t)-\gamma(a)-\gamma'(a)t||}{|t|}=0$.
$\lim_{t\rightarrow 0} \frac{||\gamma(a+t)-\gamma(a)-\gamma'(a)t||}{|t|}=\lim_{t\rightarrow 0} ||\frac{\gamma(a+t)-\gamma(a)}{t}-\gamma'(a)||=||\lim_{t\rightarrow 0} \frac{\gamma(a+t)-\gamma(a)}{t} -\gamma'(a)||=0$, where for the first equality I used $|s|||x||=||sx||$, and for the second continuity of $||\cdot ||$.
So, existence of partial derivatives for curves implies differentiability, right?
Any help would be appreciated.