Let $G$ be a group of $2\times 2$ non-singular matrices under multiplication over the field $\mathbb{Z}_3$. Define a map $f:G \to \mathbb{R}^*$ (where $\mathbb{R}^*$ is a group of non zero real under multiplication) s.t. $f(A)= |A|$. Then $o(\ker f)$ is
a) $12$
b) $24$
c) $48$
d) none of the above