Find a bijection $f:\mathbb{N} \rightarrow \mathbb{N}$ such that $f\left( x\right) \neq x$ for all $x\in\mathbb{N}$, $f^{2}=id$.
My answer is:
Let $f:=\begin{cases} 0,x=1\\ 1,x=0\\ x,x>1\end{cases}$
Thus, $f$ is not identity but $f^2$ is identity.
Can you check my answer?