$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Clearly,
$\ds{{\pi\cot\pars{\pi z} \over z^{2}} \sim {1 \over z^{3}}}$ as $\ds{z \to 0}$
because
$\ds{\cot\pars{\pi z} \sim {1 \over \pi}\,{1 \over z}}$ as $\ds{z \to 0}$.
Then, I write
\begin{equation}
{\pi\cot\pars{\pi z} \over z^{2}} \sim
{b_{-3} \over z^{3}} + {b_{-2} \over z^{2}} + {\color{#f00}{b_{-1}} \over z}
\label{1}\tag{1}
\end{equation}
I'm interested in the $\ds{\color{#f00}{b_{-1}}}$ $value$. It's convenient to rewrite \eqref{1} as
\begin{equation}
\pi \sim
\tan\pars{\pi z}\pars{{b_{-3} \over z} + b_{-2} + \color{#f00}{b_{-1}}\,z}
\label{2}\tag{2}
\end{equation}
Note that
$\ds{\tan\pars{\pi z} = \pi z - {\pi^{3} \over 3}\,z^{3} +
{2\pi^{5} \over 15}\,z^{5} + \mrm{O}\pars{z^{7}}}$. \eqref{2} becomes
\begin{equation}
\pi \sim
\pars{\pi z - {\pi^{3} \over 3}\,z^{3}}\pars{{b_{-3} \over z} + b_{-2} + \color{#f00}{b_{-1}}\,z} \equiv \,\mc{F}\pars{z}
\label{3}\tag{3}
\end{equation}
Then, with expression \eqref{3}:
\begin{align}
\pi & = \bracks{z^{0}}\,\mc{F}\pars{z} = \pi b_{-3}\implies
\bbx{\ds{b_{-3} = 1}}
\\
0 & = \bracks{z}\,\mc{F}\pars{z} = \pi b_{-2}\,\,\,\implies b_{-2} = 0
\\
0 & = \bracks{z^{2}}\,\mc{F}\pars{z} =
\pi\color{#f00}{b_{-1}} - {\pi^{3} \over 3}\,b_{-3}\,\,\,\implies
\bbx{\ds{\color{#f00}{b_{-1}} = {\pi^{2} \over 3}\,b_{-3} =
\color{#f00}{\pi^{2} \over 3}}}
\end{align}