If $x_n \to a$ then $$\lim_{n \to \infty}\frac{x_1+x_2+x_3+...+x_n}{n}=a$$
My attempt
$$=> \lim_{n \to \infty} x_1+x_2+x_3+...+x_n = na \\ => x_1-a +x_2-a +...+x_n-a = 0 \ where \ n \ is \ not \ finite$$
Since $x_n \to a$ Given $\epsilon >0$ there exists $N$ such that
$|x_n-a| < \epsilon$ whenever $n>N$
Applying to what we ended up with :
$n \epsilon = 0$
let $\epsilon \to 0$