We have to find the general solution of the trigonometric equation
I wite is as
$\sqrt3$(cos x + sin x) - (cos x - sin x) =$\sqrt2$
And cos x > sin x
But how to proceed
We have to find the general solution of the trigonometric equation
I wite is as
$\sqrt3$(cos x + sin x) - (cos x - sin x) =$\sqrt2$
And cos x > sin x
But how to proceed
We can write $\frac {1}{2}$ as $\log_3 \sqrt {3} $. Then our equation transforms to $$\sqrt {3}( \cos x +\sin x)-(\cos x-\sin x)=\sqrt {2} \Rightarrow (\sqrt {3}-1)\cos x+(\sqrt {3}+1)\sin x=\sqrt {2} $$ $$\Rightarrow (\frac {\sqrt {3}-1}{\sqrt {2}})\cos x + (\frac {\sqrt {3}+1}{\sqrt {2}})\sin x=1$$ Now setting $\frac {\sqrt {3}-1}{2\sqrt {2}} =\cos \theta $ we get an equation of the form $$2\cos (\theta -x)=1$$ which can be easily solved.
Hope it helps.
HINT:
Another way:
$$\cos x-\sin x=\sqrt2\sin\left(\dfrac\pi4-x\right)$$
$$\cos x+\sin x=\sqrt2\cos\left(\dfrac\pi4-x\right)$$
Write $\dfrac\pi4-x=\dfrac\pi2-2y$
$$\sqrt3\sin2y-\cos2y=1\iff2\sqrt3\sin y\cos y=1+\cos2y=2\cos^2y$$
$$\cos y\left(\tan y-\dfrac1{\sqrt3}\right)=0$$
We have $$(\sqrt{3}-1)\cos x+(\sqrt{3}+ 1)\sin x=\sqrt{2}$$ as a result $$\frac{\sqrt{3}-1}{1+\sqrt{3}}\cos x+\sin x=\frac{\sqrt{2}}{{1+\sqrt{3}}}$$ thus $$\tan\left(\frac{\pi}{3}-\frac{\pi}4\right)\cos x+\sin x=\frac{\sqrt{2}}{{1+\sqrt{3}}}$$ In other words $$\sin\left(\frac{\pi}{12}\right)\cos x+\cos\left(\frac{\pi}{12}\right)\sin x=\frac{\sqrt{2}}{{1+\sqrt{3}}}\cos\left(\frac{\pi}{12}\right)$$ therefore finally we have $$\sin\left(x+\frac{\pi}{12}\right)=\frac{\sqrt{2}}{{1+\sqrt{3}}}\cos\left(\frac{\pi}{12}\right)=\frac{\sqrt{2}}{{1+\sqrt{3}}}\times \frac{\sqrt{6}+\sqrt 2}{4}=\frac 12$$
HINT:
$\sqrt3-1=\tan60^\circ-\tan45^\circ=\dfrac{\sin(60-45)^\circ}{\cos60^\circ\cos45^\circ}$
$\sqrt3+1=\tan60^\circ+\tan45^\circ=\dfrac{\sin(60+45)^\circ}{\cos60^\circ\cos45^\circ}$
Now $\sin105^\circ=\sin(90+15)^\circ=\cos15^\circ$
So, we get $\sin(x+15^\circ)=\sin30^\circ$
$\implies x+15^\circ=180^\circ n+(-1)^n30^\circ$ where $n$ is any integer