0

I am confused on whether this leads to a finite value or not, but it seems the value of the series alternates around a certain interval, making it seem convergent. Please give me a valid proof as to if it's divergent or convergent.

Nafi04
  • 29

3 Answers3

2

Notice that

$$\begin{align}\sum_{n=1}^\infty\frac{(-1)^{n+1}}n&=1-\frac12+\frac13-\frac14+\dots\\&=\left(1-\frac12\right)+\left(\frac13-\frac14\right)+\dots\\&>\frac12+0+0+0+\dots\\&=\frac12\\1-\frac12+\frac13-\frac14+\dots&=1+\left(-\frac12+\frac13\right)+\left(-\frac14+\frac15\right)+\dots\\&<1+0+0+0+\dots\\&=1\end{align}$$

Lastly, note that $\lim\limits_{n\to\infty}\frac{(-1)^{n+1}}n=0$, and that

$$\frac12<S_{2n}<S_{2n+1}<1,\quad S_{2n}-S_{2n+1}\to0\text{ as }n\to\infty$$

where $S_n$ is the $n$th partial sum.

Thus, it is convergent and

$$\frac12<\sum_{n=1}^\infty\frac{(-1)^{n+1}}n<1$$


The exact value can be found from the Taylor expansion of the natural logarithm:

$$\ln(1+x)=\sum_{n=1}^\infty\frac{(-1)^{n+1}}nx^n$$

Plugging in $x=1$ yields $\sum_{n=1}^\infty\frac{(-1)^{n+1}}n=\ln(2)$

1

$\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}$ converges using Leibniz's test

idk
  • 1,051
1

You can use the alternating series test. So consider the series: $\sum a_n$

if $a_n$ is: 1)decreasing, 2)positive 3)converges to $0$

Then by the Alternating Series Test, $\sum (-1)^n a_n $ converges

In your case $a_n$ is $\frac{1}{n}$ which satisfies the above conditions, then the series you originally had converges by the alternating series test.