2

I am stuck with the following exercise:

$$\iint{ e ^ {(-x^2-y^2-axy)} dx dy}$$ for $x,y \in (-\infty, +\infty)$.

I have tried with polar coordinates and I got

$$\iint{ \rho e ^ {-\rho^2(1+\frac{a}{2} \sin(2\phi))} d\rho d\phi}$$

integrating rho I get enter image description here

The problem is that integrating phi over [0, 2pi] gives

enter image description here

My textbook says that the integral value is $$\frac{2\pi}{\sqrt{1-\frac{a^2}{4}}}$$

What did I miss?

2 Answers2

4

Note that we can evaluate the integral in Cartesian coordinates directly. We proceed by writing

$$\begin{align} \int_{-\infty}^\infty\int_{-\infty}^\infty e^{-x^2-y^2-axy}\,dx\,dy&=\int_{-\infty}^\infty e^{-y^2(1-a^2/4)}\left(\int_{-\infty}^\infty e^{-(x+ay/2)^2}\,dx\right)\,dy\\\\ &=\int_{-\infty}^\infty e^{-y^2(1-a^2/4)}\left(\int_{-\infty}^\infty e^{-x^2}\,dx\right)\,dy\\\\ &=\left(\int_{-\infty}^\infty e^{-x^2}\,dx\right)\left(\int_{-\infty}^\infty e^{-y^2(1-a^2/4)}\,dy\right)\\\\ &=\sqrt \pi \left(\int_{-\infty}^\infty e^{-y^2(1-a^2/4)}\,dy\right)\\\\ &=\sqrt \pi \frac{1}{\sqrt{1-a^2/4}}\int_{-\infty}^\infty e^{-y^2}\,dy\\\\ &=\frac{2\pi}{\sqrt{4-a^2}} \end{align}$$


If one prefers to transform to polar coordinates, then we can write

$$\begin{align} \int_{-\infty}^\infty\int_{-\infty}^\infty e^{-x^2-y^2-axy}\,dx\,dy&=\int_{0}^{2\pi}\int_{0}^\infty \rho e^{-\rho^2(1+a\sin(2\phi)/2)}\,d\rho\,d\phi\\\\ &=\int_{0}^{2\pi} \frac{1}{2+a\sin(2\phi)}\,d\phi\\\\ &=\frac12 \int_{0}^{4\pi} \frac{1}{2+a\sin(\phi)}\,d\phi\\\\ &=\frac12 \left(\int_{0}^{\pi} \frac{1}{2+a\sin(\phi)}\,d\phi+\int_{\pi}^{2\pi} \frac{1}{2+a\sin(\phi)}\,d\\\\+\int_{2\pi}^{3\pi} \frac{1}{2+a\sin(\phi)}\,d\phi+\int_{3\pi}^{4\pi} \frac{1}{2+a\sin(\phi)}\,d\phi\right)\\\\ &=\int_{0}^{\pi} \frac{1}{2+a\sin(\phi)}\,d\phi+\int_{0}^{\pi} \frac{1}{2-a\sin(\phi)}\,d\phi \end{align}$$

The integrals $\int_{0}^{\pi} \frac{1}{2+a\sin(\phi)}\,d\phi$ and $\int_{0}^{\pi} \frac{1}{2-a\sin(\phi)}\,d\phi$ can be evaluated using either contour integration or the tangent half-angle substitution with the result giving the expected result.

Mark Viola
  • 179,405
2

Not a direct answer, but an easier strategy: Rotate the plane one-eighth of a turn (to diagonalize the quadratic form) before integrating. That is, write $u = \frac{1}{\sqrt{2}}(x + y)$ and $v = \frac{1}{\sqrt{2}}(x - y)$, so that $x = \frac{1}{\sqrt{2}}(u + v)$, $y = \frac{1}{\sqrt{2}}(u - v)$, and $$ x^{2} + y^{2} + axy = (1 + \tfrac{a}{2}) u^{2} + (1 - \tfrac{a}{2}) v^{2}. $$